nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.60 226-233
HIF-1α/BNIP3通路介导的糖酵解与氧诱导新生小鼠视网膜血管生成的关系
基金项目(Foundation): 湖北省自然科学基金(编号:2019CFB401)~~
邮箱(Email): oylg07@163.com;
DOI: 10.19405/j.cnki.issn1000-1492.2025.02.006
中文作者单位:

武汉市第一医院(武汉市中西医结合医院)儿科;

摘要(Abstract):

目的 基于缺氧诱导因子-1α(HIF-1α)/Bcl2/腺病毒E1B相互作用蛋白3(BNIP3)通路的糖酵解探讨氧诱导新生小鼠视网膜血管生成机制。方法 将人脐静脉内皮细胞(HUVECs)分为常氧组、缺氧+si-NC组、缺氧+si-HIF-1α组和缺氧+si-HIF-1α+BNIP3组。常氧组HUVECs暴露于常氧(21%O_2)下培养。缺氧+si-NC组、缺氧+si-HIF-1α组和缺氧+si-HIF-1α+BNIP3组用si-NC、si-HIF-1α或si-HIF-1α联合BNIP3质粒处理HUVECs 36 h,然后暴露于缺氧(1%O_2)下培养。通过免疫荧光、代谢测量、细胞活力、划痕实验、管形成实验考察细胞线粒体自噬、糖酵解以及增殖、迁移和管形成情况。出生后第7天的C57BL/6J幼鼠随机分配到不同的治疗组:对照组、氧诱导视网膜病变(OIR)组、OIR+si-HIF-1α组和OIR+si-BNIP3组,测量新生血管形成和血管闭塞情况。结果 与常氧组比较,缺氧+si-NC组HUVECs中LC3+MitoTracker+斑点数、葡萄糖摄取和乳酸释放的速率增加(P<0.001)。与缺氧+si-NC组比较,缺氧+si-HIF-1α组HUVECs中LC3+MitoTracker+斑点数、葡萄糖摄取和乳酸释放的速率降低(P<0.01)。与常氧组比较,缺氧+si-NC组HUVECs在培养第72 h的增殖活性降低(P<0.05),并且伤口愈合面积和管形成数量增加(P<0.01)。与缺氧+si-NC组比较,缺氧+si-HIF-1α组HUVECs在培养第24、48、72小时的增殖活性降低(P<0.05),伤口愈合面积、管形成数量降低(P<0.001)。BNIP3的过表达逆转了HIF-1α敲低对线粒体自噬、糖酵解以及生物学功能的影响。与OIR组比较,OIR+si-HIF-1α组和OIR+si-BNIP3组小鼠的视网膜组织中新生血管形成和血管闭塞区域减少(P<0.05)。结论 HIF-1α/BNIP3信号通路在低氧条件下促进了HUVECs中线粒体自噬激活,其对于内皮功能和血管生成的调控有重要作用。

关键词(KeyWords): 缺氧诱导因子-1α;新生小鼠;视网膜血管;糖酵解;线粒体自噬;人脐静脉内皮细胞
参考文献

[1] Dai C,Webster K A,Bhatt A,et al.Concurrent physiological and pathological angiogenesis in retinopathy of prematurity and emerging therapies[J].Int J Mol Sci,2021,22(9):4809.doi:10.3390/ijms22094809.

[2] Campochiaro P A,Akhlaq A.Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases[J].Prog Retin Eye Res,2021,83:100921.doi:10.1016/j.preteyeres.2020.100921.

[3] Rao H,Jalali J A,Johnston T P,et al.Emerging roles of dyslipidemia and hyperglycemia in diabetic retinopathy:molecular mechanisms and clinical perspectives[J].Front Endocrinol,2021,12:620045.doi:10.3389/fendo.2021.620045.

[4] Liu X,Cui H.The palliative effects of folic acid on retinal microvessels in diabetic retinopathy via regulating the metabolism of DNA methylation and hydroxymethylation[J].Bioengineered,2021,12(2):10766-74.doi:10.1080/21655979.2021.2003924.

[5] Leung S W S,Shi Y.The glycolytic process in endothelial cells and its implications[J].Acta Pharmacol Sin,2022,43(2):251-9.doi:10.1038/s41401-021-00647-y.

[6] Marzoog B A.Autophagy behavior in endothelial cell regeneration[J].Curr Aging Sci,2024,17(1):58-67.doi:10.2174/0118746098260689231002044435.

[7] Krantz S,Kim Y M,Srivastava S,et al.Mitophagy mediates metabolic reprogramming of induced pluripotent stem cells undergoing endothelial differentiation[J].J Biol Chem,2021,297(6):101410.doi:10.1016/j.jbc.2021.101410.

[8] Gao A,Jiang J,Xie F,et al.BNIP3 in mitophagy:novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction[J].Clin Chim Acta,2020,506:72-83.doi:10.1016/j.cca.2020.02.024.

[9] Martens M D,Field J T,Seshadri N,et al.Misoprostol attenuates neonatal cardiomyocyte proliferation through BNIP3,perinuclear calcium signaling,and inhibition of glycolysis[J].J Mol Cell Cardiol,2020,146:19-31.doi:10.1016/j.yjmcc.2020.06.010.

[10] Kunimi H,Lee D,Ibuki M,et al.Inhibition of the HIF-1α/BNIP3 pathway has a retinal neuroprotective effect[J].FASEB J,2021,35(8):e21829.doi:10.1096/fj.202100572R.

[11] Ma X,Wu W,Liang W,et al.Modulation of cGAS-STING signaling by PPARα in a mouse model of ischemia-induced retinopathy[J].Proc Natl Acad Sci U S A,2022,119(48):e2208934119.doi:10.1073/pnas.2208934119.

[12] Shiwani H A,Elfaki M Y,Memon D,et al.Updates on sphingolipids:spotlight on retinopathy[J].Biomedecine Pharmacother,2021,143:112197.doi:10.1016/j.biopha.2021.112197.

[13] Brinks J,Van Dijk E H C,Klaassen I,et al.Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[J].Prog Retin Eye Res,2022,87:100994.doi:10.1016/j.preteyeres.2021.100994.

[14] Konecny L,Quadir R,Ninan A,et al.Neurovascular responses to neuronal activity during sensory development[J].Front Cell Neurosci,2022,16:1025429.doi:10.3389/fncel.2022.1025429.

[15] Zhao C,Liu Y,Meng J,et al.LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia[J].Invest Ophthalmol Vis Sci,2022,63(8):25.doi:10.1167/iovs.63.8.25.

[16] Zhang Y X,Jing M R,Cai C B,et al.Role of hydrogen sulphide in physiological and pathological angiogenesis[J].Cell Prolif,2023,56(3):e13374.doi:10.1111/cpr.13374.

[17] Han N,Xu H,Yu N,et al.MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α[J].Clin Exp Pharmacol Physiol,2020,47(1):85-94.doi:10.1111/1440-1681.13163.

[18] Pang Y,Lin Y,Wang X,et al.Inhibition of abnormally activated HIF-1α-GLUT1/3-glycolysis pathway enhances the sensitivity of hepatocellular carcinoma to 5-caffeoylquinic acid and its derivatives[J].Eur J Pharmacol,2022,920:174844.doi:10.1016/j.ejphar.2022.174844.

基本信息:

DOI:10.19405/j.cnki.issn1000-1492.2025.02.006

中图分类号:R774.1

引用信息:

[1]易燕,陈斐斐,谭赟等.HIF-1α/BNIP3通路介导的糖酵解与氧诱导新生小鼠视网膜血管生成的关系[J].安徽医科大学学报,2025,60(02):226-233.DOI:10.19405/j.cnki.issn1000-1492.2025.02.006.

基金信息:

湖北省自然科学基金(编号:2019CFB401)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文