393 | 0 | 99 |
下载次数 | 被引频次 | 阅读次数 |
目的 基于缺氧诱导因子-1α(HIF-1α)/Bcl2/腺病毒E1B相互作用蛋白3(BNIP3)通路的糖酵解探讨氧诱导新生小鼠视网膜血管生成机制。方法 将人脐静脉内皮细胞(HUVECs)分为常氧组、缺氧+si-NC组、缺氧+si-HIF-1α组和缺氧+si-HIF-1α+BNIP3组。常氧组HUVECs暴露于常氧(21%O2)下培养。缺氧+si-NC组、缺氧+si-HIF-1α组和缺氧+si-HIF-1α+BNIP3组用si-NC、si-HIF-1α或si-HIF-1α联合BNIP3质粒处理HUVECs 36 h,然后暴露于缺氧(1%O2)下培养。通过免疫荧光、代谢测量、细胞活力、划痕实验、管形成实验考察细胞线粒体自噬、糖酵解以及增殖、迁移和管形成情况。出生后第7天的C57BL/6J幼鼠随机分配到不同的治疗组:对照组、氧诱导视网膜病变(OIR)组、OIR+si-HIF-1α组和OIR+si-BNIP3组,测量新生血管形成和血管闭塞情况。结果 与常氧组比较,缺氧+si-NC组HUVECs中LC3+MitoTracker+斑点数、葡萄糖摄取和乳酸释放的速率增加(P<0.001)。与缺氧+si-NC组比较,缺氧+si-HIF-1α组HUVECs中LC3+MitoTracker+斑点数、葡萄糖摄取和乳酸释放的速率降低(P<0.01)。与常氧组比较,缺氧+si-NC组HUVECs在培养第72 h的增殖活性降低(P<0.05),并且伤口愈合面积和管形成数量增加(P<0.01)。与缺氧+si-NC组比较,缺氧+si-HIF-1α组HUVECs在培养第24、48、72小时的增殖活性降低(P<0.05),伤口愈合面积、管形成数量降低(P<0.001)。BNIP3的过表达逆转了HIF-1α敲低对线粒体自噬、糖酵解以及生物学功能的影响。与OIR组比较,OIR+si-HIF-1α组和OIR+si-BNIP3组小鼠的视网膜组织中新生血管形成和血管闭塞区域减少(P<0.05)。结论 HIF-1α/BNIP3信号通路在低氧条件下促进了HUVECs中线粒体自噬激活,其对于内皮功能和血管生成的调控有重要作用。
Abstract:Objective Based on glycolysis of hypoxia inducible factor-1α(HIF-1α)/Bcl2/adenovirus E1B interacting protein 3(BNIP3) pathway, to study the mechanism of oxygen-induced retinal angiogenesis in neonatal mice. Methods Human umbilical vein endothelial cells(HUVECs) were divided into normoxic group, hypoxia+si-NC group, hypoxia +si-HIF-1α group and hypoxia+si-HIF-1α+BNIP group. In normoxic group, HUVECs were exposed to normoxic(21% O2) and cultured. Hypoxia +si-NC group, hypoxia +si-HIF-1α group and hypoxia +si-HIF-1α+BNIP3 group were treated with si-NC, si-HIF-1α or si-HIF-1α combined with BNIP3 plasmid for 36 h, and then exposed to hypoxia(1% O2) for culture. The autophagy, glycolysis, proliferation, migration and tube formation of mitochondria were investigated by immunofluorescence, metabolic measurement, cell viability, scratch experiment and tube formation experiment. On the 7th day after birth, C57BL/6J mice were randomly assigned to different treatment groups: control group, oxygen-induced retinopathy(OIR) group, OIR+si-HIF-1α group and OIR+si-BNIP group. The neovascularization and vascular occlusion were measured. Results Compared with normoxic group, the rate of LC3+MitoTracker+ spots, glucose uptake and lactic acid release in HUVECs in hypoxia +si-NC group increased significantly(P<0.001). Compared with hypoxia +si-NC group, the rate of LC3+MitoTracker+ spots, glucose uptake and lactic acid release in HUVECs in hypoxia +si-HIF-1α group decreased significantly(P<0.01). Compared with normoxic group, the proliferation activity of HUVECs in hypoxia +si-NC group decreased significantly(P<0.05), and the wound healing area and the number of tubes formed increased significantly(P<0.01). Compared with hypoxia+si-NC group, the proliferation activity of HUVECs in hypoxia +si-HIF-1α group decreased significantly at the 24th, 48th and 72th hours of culture(P<0.05), and the wound healing area and the number of tubes formed decreased significantly(P<0.001). Overexpression of BNIP3 reversed the effects of HIF-1α knock-down on mitochondrial autophagy, glycolysis and biological function. Compared with OIR group, the neovascularization and vascular occlusion areas in retina of mice in OIR+si-HIF-1α group and OIR+si-BNIP3 group reduced significantly(P<0.05). Conclusion HIF-1α/BNIP3 signaling pathway promotes mitochondrial autophagy activation in HUVECs under hypoxia, which plays an important role in controlling endothelial function and angiogenesis.
[1] Dai C,Webster K A,Bhatt A,et al.Concurrent physiological and pathological angiogenesis in retinopathy of prematurity and emerging therapies[J].Int J Mol Sci,2021,22(9):4809.doi:10.3390/ijms22094809.
[2] Campochiaro P A,Akhlaq A.Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases[J].Prog Retin Eye Res,2021,83:100921.doi:10.1016/j.preteyeres.2020.100921.
[3] Rao H,Jalali J A,Johnston T P,et al.Emerging roles of dyslipidemia and hyperglycemia in diabetic retinopathy:molecular mechanisms and clinical perspectives[J].Front Endocrinol,2021,12:620045.doi:10.3389/fendo.2021.620045.
[4] Liu X,Cui H.The palliative effects of folic acid on retinal microvessels in diabetic retinopathy via regulating the metabolism of DNA methylation and hydroxymethylation[J].Bioengineered,2021,12(2):10766-74.doi:10.1080/21655979.2021.2003924.
[5] Leung S W S,Shi Y.The glycolytic process in endothelial cells and its implications[J].Acta Pharmacol Sin,2022,43(2):251-9.doi:10.1038/s41401-021-00647-y.
[6] Marzoog B A.Autophagy behavior in endothelial cell regeneration[J].Curr Aging Sci,2024,17(1):58-67.doi:10.2174/0118746098260689231002044435.
[7] Krantz S,Kim Y M,Srivastava S,et al.Mitophagy mediates metabolic reprogramming of induced pluripotent stem cells undergoing endothelial differentiation[J].J Biol Chem,2021,297(6):101410.doi:10.1016/j.jbc.2021.101410.
[8] Gao A,Jiang J,Xie F,et al.BNIP3 in mitophagy:novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction[J].Clin Chim Acta,2020,506:72-83.doi:10.1016/j.cca.2020.02.024.
[9] Martens M D,Field J T,Seshadri N,et al.Misoprostol attenuates neonatal cardiomyocyte proliferation through BNIP3,perinuclear calcium signaling,and inhibition of glycolysis[J].J Mol Cell Cardiol,2020,146:19-31.doi:10.1016/j.yjmcc.2020.06.010.
[10] Kunimi H,Lee D,Ibuki M,et al.Inhibition of the HIF-1α/BNIP3 pathway has a retinal neuroprotective effect[J].FASEB J,2021,35(8):e21829.doi:10.1096/fj.202100572R.
[11] Ma X,Wu W,Liang W,et al.Modulation of cGAS-STING signaling by PPARα in a mouse model of ischemia-induced retinopathy[J].Proc Natl Acad Sci U S A,2022,119(48):e2208934119.doi:10.1073/pnas.2208934119.
[12] Shiwani H A,Elfaki M Y,Memon D,et al.Updates on sphingolipids:spotlight on retinopathy[J].Biomedecine Pharmacother,2021,143:112197.doi:10.1016/j.biopha.2021.112197.
[13] Brinks J,Van Dijk E H C,Klaassen I,et al.Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[J].Prog Retin Eye Res,2022,87:100994.doi:10.1016/j.preteyeres.2021.100994.
[14] Konecny L,Quadir R,Ninan A,et al.Neurovascular responses to neuronal activity during sensory development[J].Front Cell Neurosci,2022,16:1025429.doi:10.3389/fncel.2022.1025429.
[15] Zhao C,Liu Y,Meng J,et al.LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia[J].Invest Ophthalmol Vis Sci,2022,63(8):25.doi:10.1167/iovs.63.8.25.
[16] Zhang Y X,Jing M R,Cai C B,et al.Role of hydrogen sulphide in physiological and pathological angiogenesis[J].Cell Prolif,2023,56(3):e13374.doi:10.1111/cpr.13374.
[17] Han N,Xu H,Yu N,et al.MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α[J].Clin Exp Pharmacol Physiol,2020,47(1):85-94.doi:10.1111/1440-1681.13163.
[18] Pang Y,Lin Y,Wang X,et al.Inhibition of abnormally activated HIF-1α-GLUT1/3-glycolysis pathway enhances the sensitivity of hepatocellular carcinoma to 5-caffeoylquinic acid and its derivatives[J].Eur J Pharmacol,2022,920:174844.doi:10.1016/j.ejphar.2022.174844.
基本信息:
DOI:10.19405/j.cnki.issn1000-1492.2025.02.006
中图分类号:R774.1
引用信息:
[1]易燕,陈斐斐,谭赟等.HIF-1α/BNIP3通路介导的糖酵解与氧诱导新生小鼠视网膜血管生成的关系[J].安徽医科大学学报,2025,60(02):226-233.DOI:10.19405/j.cnki.issn1000-1492.2025.02.006.
基金信息:
湖北省自然科学基金(编号:2019CFB401)~~